Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLoS One ; 18(3): e0283708, 2023.
Article in English | MEDLINE | ID: covidwho-2263097

ABSTRACT

BACKGROUND: COVID-19 is associated with cardiac dysfunction. This study tested the relative prognostic role of left (LV), right and bi- (BiV) ventricular dysfunction on mortality in a large multicenter cohort of patients during and after acute COVID-19 hospitalization. METHODS/RESULTS: All hospitalized COVID-19 patients who underwent clinically indicated transthoracic echocardiography within 30 days of admission at four NYC hospitals between March 2020 and January 2021 were studied. Images were re-analyzed by a central core lab blinded to clinical data. Nine hundred patients were studied (28% Hispanic, 16% African-American), and LV, RV and BiV dysfunction were observed in 50%, 38% and 17%, respectively. Within the overall cohort, 194 patients had TTEs prior to COVID-19 diagnosis, among whom LV, RV, BiV dysfunction prevalence increased following acute infection (p<0.001). Cardiac dysfunction was linked to biomarker-evidenced myocardial injury, with higher prevalence of troponin elevation in patients with LV (14%), RV (16%) and BiV (21%) dysfunction compared to those with normal BiV function (8%, all p<0.05). During in- and out-patient follow-up, 290 patients died (32%), among whom 230 died in the hospital and 60 post-discharge. Unadjusted mortality risk was greatest among patients with BiV (41%), followed by RV (39%) and LV dysfunction (37%), compared to patients without dysfunction (27%, all p<0.01). In multivariable analysis, any RV dysfunction, but not LV dysfunction, was independently associated with increased mortality risk (p<0.01). CONCLUSIONS: LV, RV and BiV function declines during acute COVID-19 infection with each contributing to increased in- and out-patient mortality risk. RV dysfunction independently increases mortality risk.


Subject(s)
COVID-19 , Heart Diseases , Ventricular Dysfunction, Left , Humans , COVID-19/complications , Outpatients , Aftercare , COVID-19 Testing , Cardiac Pacing, Artificial/methods , Patient Discharge , Hospitals
2.
Cardiovasc Digit Health J ; 3(5): 247-255, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966475

ABSTRACT

Background: Cardiac implantable electronic devices (CIEDs) may enable early identification of COVID-19 to facilitate timelier intervention. Objective: To characterize early physiologic changes associated with the onset of acute COVID-19 infection, as well as during and after acute infection, among patients with CIEDs. Methods: CIED sensor data from March 2020 to February 2021 from 286 patients with a CIED were linked to clinical data from electronic health records. Three cohorts were created: known COVID-positive (n = 20), known COVID-negative (n = 166), and a COVID-untested control group (n = 100) included to account for testing bias. Associations between changes in CIED sensors from baseline (including HeartLogic index, a composite index predicting worsening heart failure) and COVID-19 status were evaluated using logistic regression models, Wilcoxon signed rank tests, and Mann-Whitney U tests. Results: Significant differences existed between the cohorts by race, ethnicity, CIED device type, and medical admissions. Several sensors changed earlier for COVID-positive vs COVID-negative patients: HeartLogic index (mean 16.4 vs 9.2 days [P = .08]), respiratory rate (mean 8.5 vs 3.9 days [P = .01], and activity (mean 8.2 vs 3.5 days [P = .008]). Respiratory rate during the 7 days before testing significantly predicted a positive vs negative COVID-19 test, adjusting for age, sex, race, and device type (odds ratio 2.31 [95% confidence interval 1.33-5.13]). Conclusion: Physiologic data from CIEDs could signal early signs of infection that precede clinical symptoms, which may be used to support early detection of infection to prevent decompensation in this at-risk population.

4.
JAMA Cardiol ; 7(5): 556-564, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1594749

ABSTRACT

Importance: Heart failure (HF) is often characterized by an insidious disease course leading to frequent rehospitalizations and a high use of ambulatory care. Remote cardiac monitoring is a promising approach to detect worsening HF early and intervene prior to an overt decompensation. Observations: Recently, a multitude of novel technologies for remote cardiac monitoring (RCM) in patients with HF have been developed and are undergoing clinical trials. This development has been accelerated by the COVID-19 pandemic. Conclusions and Relevance: This review summarizes the major clinical trials on RCM in patients with HF and present the most recent developments in noninvasive and invasive RCM technologies.


Subject(s)
COVID-19 , Heart Failure , Ambulatory Care , Heart Failure/epidemiology , Humans , Monitoring, Physiologic , Pandemics
5.
Pulm Circ ; 11(4): 20458940211053196, 2021.
Article in English | MEDLINE | ID: covidwho-1496097

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, morbid, potentially curable subtype of pulmonary hypertension that negatively impacts health-related quality of life (HRQoL). Little is known about differences in HRQoL and hospitalization between CTEPH patients and idiopathic pulmonary arterial hypertension (IPAH) patients. Using multivariable linear regression and mixed effects models, we examined differences in HRQoL assessed by emPHasis-10 (E10) and SF-12 between CTEPH and IPAH patients in the Pulmonary Hypertension Association Registry, a prospective multicenter cohort of patients newly evaluated at a Pulmonary Hypertension Care Center. Multivariable negative binomial regression models were used to estimate incidence rate ratios (IRR) for hospitalization amongst the two groups. We included 461 IPAH patients and 169 CTEPH patients. Twenty-one percent of CTEPH patients underwent pulmonary thromboendarterectomy (PTE) before the end of follow-up. At baseline, patients with CTEPH had significantly worse HRQoL (higher E10 scores) (ß 2.83, SE 1.11, p = 0.01); however, differences did not persist over time. CTEPH patients had higher rates of hospitalization (excluding the hospitalization for PTE) compared to IPAH patients after adjusting for age, sex, body mass index, WHO functional class and six-minute walk distance (IRR 1.66, 95%CI 1.04-2.65, p = 0.03). CTEPH patients who underwent PTE had improved HRQoL as compared to those who were medically managed, but patients who underwent PTE were younger, had higher cardiac outputs and greater six-minute walk distances. In this large, prospective, multicenter cohort, CTEPH patients had significantly worse baseline HRQoL and higher rates of hospitalizations than those with IPAH. CTEPH patients who underwent PTE had significant improvements in HRQoL.

8.
J Am Coll Cardiol ; 76(17): 1965-1977, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-872172

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a growing pandemic that confers augmented risk for right ventricular (RV) dysfunction and dilation; the prognostic utility of adverse RV remodeling in COVID-19 patients is uncertain. OBJECTIVES: The purpose of this study was to test whether adverse RV remodeling (dysfunction/dilation) predicts COVID-19 prognosis independent of clinical and biomarker risk stratification. METHODS: Consecutive COVID-19 inpatients undergoing clinical transthoracic echocardiography at 3 New York City hospitals were studied; images were analyzed by a central core laboratory blinded to clinical and biomarker data. RESULTS: In total, 510 patients (age 64 ± 14 years, 66% men) were studied; RV dilation and dysfunction were present in 35% and 15%, respectively. RV dysfunction increased stepwise in relation to RV chamber size (p = 0.007). During inpatient follow-up (median 20 days), 77% of patients had a study-related endpoint (death 32%, discharge 45%). RV dysfunction (hazard ratio [HR]: 2.57; 95% confidence interval [CI]: 1.49 to 4.43; p = 0.001) and dilation (HR: 1.43; 95% CI: 1.05 to 1.96; p = 0.02) each independently conferred mortality risk. Patients without adverse RV remodeling were more likely to survive to hospital discharge (HR: 1.39; 95% CI: 1.01 to 1.90; p = 0.041). RV indices provided additional risk stratification beyond biomarker strata; risk for death was greatest among patients with adverse RV remodeling and positive biomarkers and was lesser among patients with isolated biomarker elevations (p ≤ 0.001). In multivariate analysis, adverse RV remodeling conferred a >2-fold increase in mortality risk, which remained significant (p < 0.01) when controlling for age and biomarker elevations; the predictive value of adverse RV remodeling was similar irrespective of whether analyses were performed using troponin, D-dimer, or ferritin. CONCLUSIONS: Adverse RV remodeling predicts mortality in COVID-19 independent of standard clinical and biomarker-based assessment.


Subject(s)
Coronavirus Infections/diagnostic imaging , Echocardiography , Heart/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Ventricular Remodeling , Aged , Aged, 80 and over , Betacoronavirus , Biomarkers/blood , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Female , Heart/physiopathology , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Risk Assessment , SARS-CoV-2
10.
Circ Heart Fail ; 13(9): e007516, 2020 09.
Article in English | MEDLINE | ID: covidwho-748835

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic imposed severe restrictions on traditional methods of patient care. During the pandemic, the heart failure program at New York-Presbyterian Hospital in New York, NY rapidly and comprehensively transitioned its care delivery model and administrative organization to conform to a new healthcare environment while still providing high-quality care to a large cohort of patients with heart failure, heart transplantation, and left ventricular assist device. In addition to the widespread adoption of telehealth, our program restructured outpatient care, initiating a shared clinic model and introducing a comprehensive remote monitoring program to manage patients with heart failure and heart transplant. All conferences, including administrative meetings, support groups, and educational seminars were converted to teleconferencing platforms. Following the peak of COVID-19, many of the new changes have been maintained, and the program structure will be permanently altered as a lasting effect of this pandemic. In this article, we review the details of our program's transition in the face of COVID-19 and highlight the programmatic changes that will endure.


Subject(s)
Cardiology/organization & administration , Coronavirus Infections/epidemiology , Delivery of Health Care/organization & administration , Heart Failure/therapy , Pneumonia, Viral/epidemiology , Telemedicine/organization & administration , Advance Care Planning , Ambulatory Care/organization & administration , Betacoronavirus , COVID-19 , Heart Transplantation , Heart-Assist Devices , Humans , New York City/epidemiology , Nurse Practitioners , Pandemics , Physicians , Professional Role , SARS-CoV-2 , Self-Help Groups , Telecommunications , Tertiary Care Centers/organization & administration , Videoconferencing
11.
Clin Immunol ; 219: 108555, 2020 10.
Article in English | MEDLINE | ID: covidwho-696063

ABSTRACT

Respiratory failure and acute kidney injury (AKI) are associated with high mortality in SARS-CoV-2-associated Coronavirus disease 2019 (COVID-19). These manifestations are linked to a hypercoaguable, pro-inflammatory state with persistent, systemic complement activation. Three critical COVID-19 patients recalcitrant to multiple interventions had skin biopsies documenting deposition of the terminal complement component C5b-9, the lectin complement pathway enzyme MASP2, and C4d in microvascular endothelium. Administration of anti-C5 monoclonal antibody eculizumab led to a marked decline in D-dimers and neutrophil counts in all three cases, and normalization of liver functions and creatinine in two. One patient with severe heart failure and AKI had a complete remission. The other two individuals had partial remissions, one with resolution of his AKI but ultimately succumbing to respiratory failure, and another with a significant decline in FiO2 requirements, but persistent renal failure. In conclusion, anti-complement therapy may be beneficial in at least some patients with critical COVID-19.


Subject(s)
Acute Kidney Injury/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/pathogenicity , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Acute Kidney Injury/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/virology , Adult , Betacoronavirus/immunology , Biomarkers/metabolism , COVID-19 , Complement Activation/drug effects , Complement C4b/antagonists & inhibitors , Complement C5/antagonists & inhibitors , Complement Membrane Attack Complex/antagonists & inhibitors , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Immunity, Humoral/drug effects , Male , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/immunology , Middle Aged , Neutrophils/immunology , Neutrophils/pathology , Pandemics , Peptide Fragments/antagonists & inhibitors , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/virology
15.
Circulation ; 141(23): 1930-1936, 2020 06 09.
Article in English | MEDLINE | ID: covidwho-32308
SELECTION OF CITATIONS
SEARCH DETAIL